Home Search Reference Manuals Return
Before a vehicle model can be created, information about the vehicle must be collected. Following list can assist you in this work:
Vehicle data ##################################################### i= Important data e= Data that can be estimated Principal dimensions ===================================================== i func const acb_= XXX # Bogie semi-distance i func const aba_= XXX # Wheelset semi-distance within a bogie (long.) Masses ===================================================== Car-body incl carbody-bogie links and upper ends of airbags -------------------------------------- i func const mc_ = XXX # Mass e func const Jfc_= XXX # Moment of inertia, roll e func const Jkc_= XXX # Moment of inertia, pitch e func const Jpc_= XXX # Moment of inertia, yaw i accg,bccg,hccg # Centre of gravity Bogie frame incl motors & brakes, but no wheelsets and no primary links ----------------------------------------------------------------------- i func const mb_ = XXX # Mass e func const Jfb_= XXX # Moment of inertia, roll e func const Jkb_= XXX # Moment of inertia, pitch e func const Jpb_= XXX # Moment of inertia, yaw i abcg,bbcg,hbcg # Centre of gravity Gearbox house -------------------------------------- Belongs to axle in x,y,f&p-directions Has own degrees of freedom in direction k or belongs to the bogie frame Has own degrees of freedom in direction z or belongs partly to bogie frame and partly to axle i func const mg_ = XXX # Mass e func const Jfg_= XXX # Moment of inertia, roll e func const Jkg_= XXX # Moment of inertia, pitch e func const Jpg_= XXX # Moment of inertia, yaw i agcg,bgcg,hgcg # Centre of gravity Primary links -------------------------------------- i func const mpl_ = XXX # Mass e func const Jfpl_= XXX # Moment of inertia, roll e func const Jkpl_= XXX # Moment of inertia, pitch e func const Jppl_= XXX # Moment of inertia, yaw i aplcg,bplcg,hplcg # Centre of gravity axleboxes -------------------------------------- i func const mabox_ = XXX # Mass e func const Jfabox_= XXX # Moment of inertia, roll e func const Jkabox_= XXX # Moment of inertia, pitch e func const Jpabox_= XXX # Moment of inertia, yaw i aaboxcg,baboxcg,haboxcg # Centre of gravity Axle(wheelset) (May include axleboxes, brake discs, cogwheel & gearbox housing if they not has been modeled separately) ---------------------------------------------------------------------- i func const ma_ = XXX # Mass e func const Jfa_= XXX # Moment of inertia, roll e func const Jka_= XXX # Moment of inertia, pitch e func const Jpa_= XXX # Moment of inertia, yaw i func const ro_ = XXX # Centre of gravity pos., vert. (i.e. same as wheel radius) Couplings ===================================================== Secondary susp: Coil-springs -------------------------------------- coupl k_coil3 i kxcb kycb kzcb e kfcb kkcb kpcb e hfree hcomp rf i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Secondary susp: Airbag -------------------------------------- coupl k_air3 # Airbag Detailed model i prop_kex kexki # For a description of input data parameters i prop_key keyfi # see http://www.gensys.se/doc_html/calc.html i prop_kez i ffxmax x2 ffzmax z2 i kvx cx i kvz czb beta m # or coupl k3_l # Airbag Simple model i kxcb kycb kzcb # Longitudinal, lateral and vertical stiffness e cxcb cycb czcb # Parallel viscous damping in airbag. (Can be estimated ~20% rel damping at 4Hz) i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Secondary susp: Anti-roll bar -------------------------------------- i func const kfcb= XXX # Anti-roll bar stiffness i h2 # Attachment coordinate in bogie frame Secondary susp: Bogie-Carbody traction/brake longitudinal coupling ------------------------------------------------------------------ e func const ktr= XXX # Bogie-Carbody link stiffness. (The stiffness is probably very high.) e func const ctr= XXX # Bogie-Carbody link parallel damping (Can be estimated ~20% rel damping at 4Hz) i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Secondary susp: Lateral bumpstops -------------------------------------- coupl p_nlin_s kycbs_= 0. # i XXX XXX # Break-point #1 [m],[N] clearance i XXX XXX # Break-point #2 [m],[N] symmetric property i XXX XXX # Break-point #2 [m],[N] i XXX XXX # Break-point #3 [m],[N] mechanic stop i a1,h1 # Attachment coordinate in car-body i a2,h2 # Attachment coordinate in bogie frame Secondary susp: Vertical bumpstops -------------------------------------- coupl p_nlin kzcbs_= 0. # i XXX XXX # Break-point #1 [m],[N] mechanic stop i XXX XXX # Break-point #2 [m],[N] asymmetric property i XXX XXX # Break-point #3 [m],[N] clearance i XXX XXX # Break-point #4 [m],[N] i XXX XXX # Break-point #5 [m],[N] clearance i XXX XXX # Break-point #6 [m],[N] i XXX XXX # Break-point #7 [m],[N] mechanic stop i a1,b1 # Attachment coordinate in car-body i a2,b2 # Attachment coordinate in bogie frame Secondary susp: Lateral viscous damper -------------------------------------- coupl p_nlin_st cycb = 0. # i XXX XXX # Damping #1 [Nm/s], [m] e XXX # Damping #2 [Nm/s] (NA if the damping characteristics is linear) i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Secondary susp: Vertical viscous damper -------------------------------------- coupl p_nlin_st czcb = 0. # i XXX XXX # Damping #1 [Nm/s], [m] e XXX # Damping #2 [Nm/s] (NA if the damping characteristics is linear) i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Secondary susp: Yaw viscous damper -------------------------------------- coupl p_nlin cccb_= 0. i XXX XXX # Blow-off compression i XXX XXX # Damping coeff. compression i XXX XXX i XXX XXX # Damping coeff. expansion i XXX XXX # Blow-off expansion e coupl p_lin kccb_= 0. XXX # series stiffness (Cut-off frequency ~10-12Hz) i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Primary susp: Coil springs -------------------------------------- i coupl p_lin kxbl_= 0. XXX # Stiffness i coupl p_lin kybl_= 0. XXX # Stiffness i coupl p_lin kzbl_= 0. XXX # Stiffness (Can be estimated with the formula k=d4G/(8D3N) i kzbl.hs_free # Free length of springs i kzbl.hs_tara # Length of springs at tare load i kzbl.hs_compress # Length of springs fully compressed i a1,b1,h1 # Attachment coordinate in car-body at tare load i a2,b2,h2 # Attachment coordinate in bogie frame at tare load Primary susp: Axle link bushing -------------------------------------- coupl p_lin36 kmbl_ = 0. 0. 0. 0. 0. 0. i XXX 0. 0. 0. 0. 0. stiffness i 0. XXX 0. 0. 0. 0. e 0. 0. XXX 0. 0. 0. (Is probably equal to kmbl_xx) e 0. 0. 0. XXX 0. 0. (Is probably equal to kmbl_pp) i 0. 0. 0. 0. XXX 0. i 0. 0. 0. 0. 0. XXX coupl p_lin36 cmbl_ = 0. 0. 0. 0. 0. 0. e `.2*kplbx/pi/4` 0. 0. 0. 0. 0. (Material damping e 0. `.2*kplby/pi/4` 0. 0. 0. 0. can be estimated e 0. 0. `.2*kplbz/pi/4` 0. 0. 0. ~20% rel damping at 4Hz) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. i a1,b1,h1 # Attachment coordinate in bogie frame Primary susp: Lateral bumpstops -------------------------------------- coupl p_nlin_s kycbs_= 0. # i XXX XXX # Break-point #1 [m],[N] clearance i XXX XXX # Break-point #2 [m],[N] symmetric property i XXX XXX # Break-point #2 [m],[N] i XXX XXX # Break-point #3 [m],[N] mechanic stop i a1,h1 # Attachment coordinate in car-body i a2,h2 # Attachment coordinate in bogie frame Primary susp: Vertical bumpstops -------------------------------------- coupl p_nlin kzcbs_= 0. # i XXX XXX # Break-point #1 [m],[N] mechanic stop i XXX XXX # Break-point #2 [m],[N] asymmetric property i XXX XXX # Break-point #3 [m],[N] clearance i XXX XXX # Break-point #4 [m],[N] i XXX XXX # Break-point #5 [m],[N] clearance i XXX XXX # Break-point #6 [m],[N] i XXX XXX # Break-point #7 [m],[N] mechanic stop i a1,b1 # Attachment coordinate in car-body i a2,b2 # Attachment coordinate in bogie frame Primary susp: Viscous damper -------------------------------------- coupl p_nlin_st czbl = 0. # i XXX XXX # Damping #1 [Nm/s], [m] e XXX # Damping #2 [Nm/s] (NA if the damping characteristics is linear) e coupl p_lin kczbl= 0. XXX # series stiffness (Cut-off frequency ~14-16Hz) i a1,b1,h1 # Attachment coordinate in car-body i a2,b2,h2 # Attachment coordinate in bogie frame Axle box: Bearing ---------------------------------- coupl p_lin36 kmla_= 0. 0. 0. 0. 0. 0. e 1e9 0. 0. 0. 0. 0. e 0. 1e9 0. 0. 0. 0. e 0. 0. 1e9 0. 0. 0. e 0. 0. 0. 1e9 0. 0. e 0. 0. 0. 0. 0. 0. e 0. 0. 0. 0. 0. 1e9 b2 # Lateral distance to center of bearing N.B. If the clearance in the bearing in lateral direction is over ~1mm. It might be necessary to model the lateral stiffness as non-linear Values constant for all railway vehicle models ----------------------------------------------------- func const knwr_= 600e6 # Wheel/rail normal contact stiffness func const myt_= 2e3*2.5*2.5*1.36 # track mass func const mzt_= myt_ # Track density ~2e3 kg/m2 (Ballast,subballast,subgrade,etc.) func const kyrt_= 17e6 # Lateral stiffness rail-ballast func const kzrt_= 230e6 # Vertical stiffness rail-track func const cyrt_= 10e3 # Lateral viscous damping rail-track func const czrt_= 1e6 # Vertical viscous damping rail-track func const kytg= 40e6 # Lateral stiffness track-ground func const cytg= `2*.55*sqrt(kytg*myt_)` # Lateral viscous damping track-ground coupl p_lin kztg_= 220e6 # Vertical stiffness track-ground func const cztg_= `2*0.36*sqrt(kztg_$2.v1*mzt_$2/2)` # Vertical viscous damping track-ground Data depending on the running conditions ----------------------------------------------------- func const bo_ = 0.75 # Lateral semi-distance between the nominal rolling circles func const Track_Gauge= 1435. # Gauge to be used in the intpl_track_irr-commands func char ckpfr= ENS1002t32.5_uic60i40 # Wheel-rail geometry function func const mu_= 0.35 # Wheel/rail friction coefficient