# Vehicle Data Collection List

Before a vehicle model can be created, information about the vehicle must be collected. Following list can assist you in this work:

```

Vehicle data
#####################################################
i= Important data
e= Data that can be estimated

Principal dimensions
=====================================================
i func const acb_=    XXX       # Bogie semi-distance
i func const aba_=    XXX       # Wheelset semi-distance within a bogie (long.)

Masses
=====================================================

Car-body incl carbody-bogie links and upper ends of airbags
--------------------------------------
i func const mc_ =  XXX         # Mass
e func const Jfc_=  XXX         # Moment of inertia, roll
e func const Jkc_=  XXX         # Moment of inertia, pitch
e func const Jpc_=  XXX         # Moment of inertia, yaw
i accg,bccg,hccg                # Centre of gravity

Bogie frame incl motors & brakes, but no wheelsets and no primary links
-----------------------------------------------------------------------
i func const mb_ =  XXX         # Mass
e func const Jfb_=  XXX         # Moment of inertia, roll
e func const Jkb_=  XXX         # Moment of inertia, pitch
e func const Jpb_=  XXX         # Moment of inertia, yaw
i abcg,bbcg,hbcg                # Centre of gravity

Gearbox house
--------------------------------------
Belongs to axle in x,y,f&p-directions
Has own degrees of freedom in direction k or belongs to the bogie frame
Has own degrees of freedom in direction z or belongs partly to bogie frame and partly to axle
i func const mg_ =  XXX         # Mass
e func const Jfg_=  XXX         # Moment of inertia, roll
e func const Jkg_=  XXX         # Moment of inertia, pitch
e func const Jpg_=  XXX         # Moment of inertia, yaw
i agcg,bgcg,hgcg                # Centre of gravity

--------------------------------------
i func const mpl_ =  XXX        # Mass
e func const Jfpl_=  XXX        # Moment of inertia, roll
e func const Jkpl_=  XXX        # Moment of inertia, pitch
e func const Jppl_=  XXX        # Moment of inertia, yaw
i aplcg,bplcg,hplcg             # Centre of gravity

axleboxes
--------------------------------------
i func const mabox_ =  XXX      # Mass
e func const Jfabox_=  XXX      # Moment of inertia, roll
e func const Jkabox_=  XXX      # Moment of inertia, pitch
e func const Jpabox_=  XXX      # Moment of inertia, yaw
i aaboxcg,baboxcg,haboxcg       # Centre of gravity

Axle(wheelset)
(May include axleboxes, brake discs, cogwheel & gearbox housing
if they not has been modeled separately)
----------------------------------------------------------------------
i func const ma_ =  XXX         # Mass
e func const Jfa_=  XXX         # Moment of inertia, roll
e func const Jka_=  XXX         # Moment of inertia, pitch
e func const Jpa_=  XXX         # Moment of inertia, yaw
i func const ro_ =  XXX         # Centre of gravity pos., vert. (i.e. same as wheel radius)

Couplings
=====================================================

Secondary susp: Coil-springs
--------------------------------------
coupl k_coil3
i kxcb kycb kzcb
e kfcb kkcb kpcb
e hfree hcomp rf
i a1,b1,h1                      # Attachment coordinate in car-body
i a2,b2,h2                      # Attachment coordinate in bogie frame

Secondary susp: Airbag
--------------------------------------
coupl k_air3                  # Airbag Detailed model
i prop_kex   kexki              # For a description of input data parameters
i prop_key   keyfi              # see http://www.gensys.se/doc_html/calc.html
i prop_kez
i ffxmax  x2    ffzmax z2
i kvx     cx
i kvz     czb   beta   m
# or
coupl k3_l                    # Airbag Simple model
i kxcb kycb kzcb                # Longitudinal, lateral and vertical stiffness
e cxcb cycb czcb                # Parallel viscous damping in airbag. (Can be estimated ~20% rel damping at 4Hz)
i a1,b1,h1                      # Attachment coordinate in car-body
i a2,b2,h2                      # Attachment coordinate in bogie frame

Secondary susp: Anti-roll bar
--------------------------------------
i func const kfcb=  XXX         # Anti-roll bar stiffness
i h2                            # Attachment coordinate in bogie frame

Secondary susp: Bogie-Carbody traction/brake longitudinal coupling
------------------------------------------------------------------
e func const ktr=   XXX         # Bogie-Carbody link stiffness.       (The stiffness is probably very high.)
e func const ctr=   XXX         # Bogie-Carbody link parallel damping (Can be estimated ~20% rel damping at 4Hz)
i a1,b1,h1                      # Attachment coordinate in car-body
i a2,b2,h2                      # Attachment coordinate in bogie frame

Secondary susp: Lateral bumpstops
--------------------------------------
coupl p_nlin_s kycbs_= 0.             #
i                       XXX  XXX        # Break-point #1 [m],[N]  clearance
i                       XXX  XXX        # Break-point #2 [m],[N]  symmetric property
i                       XXX  XXX        # Break-point #2 [m],[N]
i                       XXX  XXX        # Break-point #3 [m],[N]  mechanic stop
i a1,h1                                 # Attachment coordinate in car-body
i a2,h2                                 # Attachment coordinate in bogie frame

Secondary susp: Vertical bumpstops
--------------------------------------
coupl p_nlin  kzcbs_= 0.              #
i                       XXX XXX         # Break-point #1 [m],[N] mechanic stop
i                       XXX XXX         # Break-point #2 [m],[N] asymmetric property
i                       XXX XXX         # Break-point #3 [m],[N] clearance
i                       XXX XXX         # Break-point #4 [m],[N]
i                       XXX XXX         # Break-point #5 [m],[N] clearance
i                       XXX XXX         # Break-point #6 [m],[N]
i                       XXX XXX         # Break-point #7 [m],[N] mechanic stop
i a1,b1                                 # Attachment coordinate in car-body
i a2,b2                                 # Attachment coordinate in bogie frame

Secondary susp: Lateral viscous damper
--------------------------------------
coupl p_nlin_st cycb = 0.             #
i                        XXX  XXX       # Damping #1 [Nm/s], [m]
e                        XXX            # Damping #2 [Nm/s]    (NA if the damping characteristics is linear)
i a1,b1,h1                              # Attachment coordinate in car-body
i a2,b2,h2                              # Attachment coordinate in bogie frame

Secondary susp: Vertical viscous damper
--------------------------------------
coupl p_nlin_st czcb = 0.             #
i                        XXX  XXX       # Damping #1 [Nm/s], [m]
e                        XXX            # Damping #2 [Nm/s]    (NA if the damping characteristics is linear)
i a1,b1,h1                              # Attachment coordinate in car-body
i a2,b2,h2                              # Attachment coordinate in bogie frame

Secondary susp: Yaw viscous damper
--------------------------------------
coupl p_nlin  cccb_= 0.
i                      XXX XXX          # Blow-off compression
i                      XXX XXX          # Damping coeff. compression
i                      XXX XXX
i                      XXX XXX          # Damping coeff. expansion
i                      XXX XXX          # Blow-off expansion
e coupl p_lin   kccb_= 0. XXX           # series stiffness     (Cut-off frequency ~10-12Hz)
i a1,b1,h1                              # Attachment coordinate in car-body
i a2,b2,h2                              # Attachment coordinate in bogie frame

Primary susp: Coil springs
--------------------------------------
i coupl p_lin   kxbl_= 0. XXX           # Stiffness
i coupl p_lin   kybl_= 0. XXX           # Stiffness
i coupl p_lin   kzbl_= 0. XXX           # Stiffness (Can be estimated with the formula k=d4G/(8D3N)
i kzbl.hs_free                          # Free length of springs
i kzbl.hs_tara                          # Length of springs at tare load
i kzbl.hs_compress                      # Length of springs fully compressed
i a1,b1,h1                              # Attachment coordinate in car-body at tare load
i a2,b2,h2                              # Attachment coordinate in bogie frame at tare load

--------------------------------------
coupl p_lin36 kmbl_  =   0.     0.     0.     0.       0.      0.
i                          XXX    0.     0.     0.       0.      0.  stiffness
i                          0.     XXX    0.     0.       0.      0.
e                          0.     0.     XXX    0.       0.      0.  (Is probably equal to kmbl_xx)
e                          0.     0.     0.     XXX      0.      0.  (Is probably equal to kmbl_pp)
i                          0.     0.     0.     0.       XXX     0.
i                          0.     0.     0.     0.       0.      XXX

coupl p_lin36 cmbl_   =  0.        0.        0.        0.  0.  0.
e                    `.2*kplbx/pi/4` 0.        0.        0.  0.  0. (Material damping
e                          0. `.2*kplby/pi/4`  0.        0.  0.  0.  can be estimated
e                          0.        0. `.2*kplbz/pi/4`  0.  0.  0.  ~20% rel damping at 4Hz)
0.        0.        0.        0.  0.  0.
0.        0.        0.        0.  0.  0.
0.        0.        0.        0.  0.  0.
i a1,b1,h1      # Attachment coordinate in bogie frame

Primary susp: Lateral bumpstops
--------------------------------------
coupl p_nlin_s kycbs_= 0.             #
i                        XXX  XXX       # Break-point #1 [m],[N]  clearance
i                        XXX  XXX       # Break-point #2 [m],[N]  symmetric property
i                        XXX  XXX       # Break-point #2 [m],[N]
i                        XXX  XXX       # Break-point #3 [m],[N]  mechanic stop
i a1,h1                                 # Attachment coordinate in car-body
i a2,h2                                 # Attachment coordinate in bogie frame

Primary susp: Vertical bumpstops
--------------------------------------
coupl p_nlin  kzcbs_= 0.              #
i                       XXX XXX         # Break-point #1 [m],[N]  mechanic stop
i                       XXX XXX         # Break-point #2 [m],[N]  asymmetric property
i                       XXX XXX         # Break-point #3 [m],[N]  clearance
i                       XXX XXX         # Break-point #4 [m],[N]
i                       XXX XXX         # Break-point #5 [m],[N]  clearance
i                       XXX XXX         # Break-point #6 [m],[N]
i                       XXX XXX         # Break-point #7 [m],[N]  mechanic stop
i a1,b1                                 # Attachment coordinate in car-body
i a2,b2                                 # Attachment coordinate in bogie frame

Primary susp: Viscous damper
--------------------------------------
coupl p_nlin_st czbl = 0.             #
i                        XXX   XXX      # Damping #1 [Nm/s], [m]
e                        XXX            # Damping #2 [Nm/s]    (NA if the damping characteristics is linear)
e coupl p_lin   kczbl= 0.  XXX          # series stiffness     (Cut-off frequency ~14-16Hz)
i a1,b1,h1                              # Attachment coordinate in car-body
i a2,b2,h2                              # Attachment coordinate in bogie frame

Axle box: Bearing
----------------------------------
coupl p_lin36 kmla_=   0.      0.      0.      0.      0.      0.
e                       1e9     0.      0.      0.      0.      0.
e                       0.      1e9     0.      0.      0.      0.
e                       0.      0.      1e9     0.      0.      0.
e                       0.      0.      0.      1e9     0.      0.
e                       0.      0.      0.      0.      0.      0.
e                       0.      0.      0.      0.      0.      1e9
b2                             # Lateral distance to center of bearing
N.B. If the clearance in the bearing in lateral direction is over ~1mm.
It might be necessary to model the lateral stiffness as non-linear

Values constant for all railway vehicle models
-----------------------------------------------------
func const knwr_= 600e6               # Wheel/rail normal contact stiffness
func const myt_= 2e3*2.5*2.5*1.36     # track mass
func const mzt_= myt_                 # Track density ~2e3 kg/m2 (Ballast,subballast,subgrade,etc.)
func const kyrt_=   17e6              # Lateral stiffness rail-ballast
func const kzrt_=  230e6              # Vertical stiffness rail-track
func const cyrt_=   10e3              # Lateral viscous damping rail-track
func const czrt_=    1e6              # Vertical viscous damping rail-track
func const kytg= 40e6                         # Lateral stiffness track-ground
func const cytg= `2*.55*sqrt(kytg*myt_)`      # Lateral viscous damping track-ground
coupl p_lin kztg_= 220e6                              # Vertical stiffness track-ground
func  const cztg_= `2*0.36*sqrt(kztg_\$2.v1*mzt_\$2/2)` # Vertical viscous damping track-ground

Data depending on the running conditions
-----------------------------------------------------
func const  bo_ = 0.75                   # Lateral semi-distance between the nominal rolling circles
func const  Track_Gauge= 1435.           # Gauge to be used in the intpl_track_irr-commands
func char   ckpfr= ENS1002t32.5_uic60i40 # Wheel-rail geometry function
func const  mu_= 0.35                    # Wheel/rail friction coefficient

```