Home Up Search Reference Manuals Return
Non-linear critical speed can be defined and calculated in many different ways. The most common way of calculating critical speed is probably according to the instability criterion, defined in in EN14363. However, calculating the the instability criterion according to EN14363 requires many simulations, and is a bit cumbersome.
To quickly calculate the critical speed with only one simulation. The following method can be used:
func const vkmh_deacc= 5 # Deacceleration when calculating critical speed func operp vkmh= vkmh_init - vkmh_deacc * time # Vary vkmh linearilyThe initial speed must be chosen differently depending on type of vehicle.
func const Track_Gauge= 1435. # Gauge to be used in the intpl_track_irr-commands func const Xtrac_start= 0. func const Xtrac_stop= 30000. func intpl_track_irr2 Xtrac_start Xtrac_stop Ideal_track Track_Gauge
if_then Vo .gt. 80 func operp YMtrac= 0.25e-3 * ( Vo - 80 ) / (vkmh_init-80) + 1e-3 * ( vkmh_init - Vo ) / (vkmh_init-80) func operp ZMtrac= 0.25e-3 * ( Vo - 80 ) / (vkmh_init-80) + 1e-3 * ( vkmh_init - Vo ) / (vkmh_init-80) else func copy YMtrac= 1e-3 func copy ZMtrac= 1e-3 endifFor friction damped bogies, also disturbances from the sleeper can be added. E.g.:
func operp kzrt_111 = 230e6 + 27e6 * sin( 2*pi/0.65 * axl_111.X ) func operp kzrt_112 = 230e6 + 27e6 * sin( 2*pi/0.65 * axl_112.X )
substruct crit_excit [ # $1= bog_no initval set_var bog_$1.p = .015 initval set_var axl_$11.y= .015*aba_$1 initval set_var axl_$12.y=-.015*aba_$1 initval set_var axl_$11.p= .015 initval set_var axl_$12.p= .015 force rel_lsys1 deacc_bog_$1 bog_$1 0 0 -hbcg_$1 -mb_$1*vkmh_deacc/3.6 0. 0. 0. 0. 0. # Deacceleration vkmh_deacc in [km/h/s] force rel_lsys1 deacc_axl_$11 axl_$11 0 0 -ro_$11 -(ma_$11+Jka_$11/ro_$11^2)*vkmh_deacc/3.6 0. 0. 0. 0. 0. # as external forces force rel_lsys1 deacc_axl_$12 axl_$12 0 0 -ro_$12 -(ma_$12+Jka_$12/ro_$12^2)*vkmh_deacc/3.6 0. 0. 0. 0. 0. ] in_substruct crit_excit [ 11 ] # $1= bog_no in_substruct crit_excit [ 12 ] force rel_lsys1 deacc_car_1 car_1 0 0 -hccg_1 -mc_1*vkmh_deacc/3.6 0. 0. 0. 0. 0. # Deacceleration vkmh_deacc in [km/h/s]The forces on the masses depends on the weight of the mass, the forces shall be applied in the center of gravity for the masses.
mu_ = 0.6 mulf_= 1.0
With the above descibed method the results may change a little depending on the deacceleration rate vkmh_deacc. A large value in vkmh_deacc will normally lead to a lower critical speed. The critical speed for vkmh_deacc= 0. can be calculated in the following way: